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Heat Conduction Analysis in Bodies Containing Thin-Walled

Structures by Means of Hybrid BNM with an Application to

CNT-Based Composites∗

Jianming ZHANG∗∗, Masataka TANAKA∗∗∗, Toshiro MATSUMOTO∗∗∗∗ and Artur GUZIK†

This paper discusses an implementation of Hybrid Boundary Node Method (Hybrid
BNM) to the heat conduction analysis within bodies containing thin-walled structures. As
an application, the thermal analysis in carbon nanotubes (CNT) based composites is pre-
sented. CNTs are predicted to possess superior heat conductivity and may, even with a small
amount embedded, substantially improve heat conducting behavior of polymers. In this pa-
per the equivalent heat conductivities of CNT-based nanocomposites are evaluated using a
3-D nanoscale representative volume element (RVE) model and the hybrid boundary node
method (Hybrid BNM). The temperature distribution and heat flux concentration are studied.
The equivalent heat conductivity of the RVE as a function of the nanotube length is calcu-
lated and discussed, and, moreover, an approximate formula for its evaluation for an RVE
containing single nanotube is proposed. Computations indicate that addition of about 7.2%
to 17% (volume fraction) of CNT to the polymer matrix may result in the increase of heat
conductivity of the composite varying from 49% to 334% both for short and long CNT.

Key Words: Carbon Nanotube, Nanocomposites, Heat Conductivity, Hybrid Boundary
Node Method

1. Introduction

Over the last decade carbon nanotubes (CNT) have
been attracting considerable attention from both scien-
tists and engineers. Due to their near-perfect nanostruc-
ture, which can be thought of as a hexagonal sheet of car-
bon atoms rolled into a seamless cylinder with two semi-
sphere caps at each end, the carbon nanotubes are pre-
dicted to possess exceptional physical properties such as
superior heat and electrical conductivities, as well as high
stiffness, strength and resilience.

Intensive research has been carried out on these quasi-
one-dimensional structures concerning their production,
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physical properties and possible applications(1), (2). A few
recent experiments have been reported on mats of com-
pressed ropes of CNTs(3), (4). By assuming that both ther-
mal and electrical conductivities follow the same rules for
transport, values of thermal conductivity of CNTs, ranging
from 1 750 to 5 850 W/m ·K, have been extrapolated from
experimental measurement on mats of nanotube ropes.
The direct measurements of individual nanotube were also
performed using MEMS measurement technology(5). Fol-
lowing those experiments, several preliminary molecular
dynamics simulations(6) – (8) of the thermal conductivity
gave even higher values, namely, 6 600 W/m·K at 300 K(6).
Although the estimated values of thermal conductivity
were different from each other, it is generally accepted
that the CNTs possess excellent heat conductivity, com-
parable or even higher than diamond, considered so far as
the best heat conductor. Unlike the electrical conductiv-
ity, no significant dependence on the nanotube chirality is
seen, while its strong dependence on radius(7). Moreover,
the heat conductivity of a CNT is less sensitive to the de-
fects and voids than that of diamond(8).

These remarkable properties may make CNTs ideal
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for a wide range of technological applications. One of
the most intriguing applications is the use of CNTs, as a
small volume fraction filler, in nanotube-reinforced poly-
mers. CNT-based composites offer significant improve-
ments to structural properties over their base polymers. It
has been demonstrated that with only 1% (weight fraction)
of CNTs added to a matrix material, the stiffness of a re-
sulting composite can increase as high as 36 – 42% and
the tensile strength up to 25%(9). Most of numerical sim-
ulations so far have been focused on characterizing the ef-
fective mechanical properties of the nanocomposites, such
as Young’s modulus(10), (11), while relatively fewer studied
the thermal conductivities. The thermal properties of the
CNT-based composites are as important as their mechani-
cal properties in engineering applications.

The main aim of this study is to gain insight into the
thermal properties of CNT-based composites through nu-
merical simulation based on continuum approach. The
equivalent heat conductivity of carbon nanotube-based
composites is evaluated using a representative volume el-
ement (RVE) based on 3-D potential theory and solved
by means of the hybrid boundary node method combined
with a multi-domain solver. The temperature distribution
and flux concentration in an RVE containing single nano-
tube are investigated.

2. Computational Techniques and Models

Numerical simulations can play an important role
in the development of the CNT-based composites and
help to understand the physical phenomena and, further-
more, analysis and design of such nanocomposites. At
the nanoscale level, tests are both extremely difficult and
expensive to perform. Modeling and simulations, on the
other hand, can be readily achieved and are cost effective.
Characterizing the physical properties of CNT-based com-
posites is just one of the many important and urgent tasks
that simulations can accomplish.

Simulations of individual CNTs using atomistic or
molecular dynamics (MD) models have provided abun-
dant results helping in understanding their thermal, me-
chanical and electrical behaviors. However, these simu-
lations are so far limited to very small length and time
scales and cannot deal with the larger models, mainly due
to the limitations in current computing power. Continuum
mechanics has also been successfully applied for individ-
ual CNTs or CNT bundles to investigate their mechanical
properties. Although the validity of the continuum ap-
proach to modeling of CNTs is still not fully confirmed
and will continue to be questioned, it seems at present to
be the only feasible approach for carrying some prelimi-
nary simulations of CNT-based composites.

One of the methods of developing manageable 3-D
continuum models for the study of CNT-based compos-
ites is to extend the concept of representative volume ele-

ment used for conventional fiber-reinforced composites at
the microscale(12). In the RVE approach, a single/multiple
nanotube(s) with surrounding matrix material are mod-
eled, with properly applied boundary and interface con-
ditions to account for the effects of the surrounding ma-
terials. Liu et al.(10) applied the FEM to analyze the me-
chanical responses of these RVEs with single nanotube in-
cluded under different loading conditions, and estimated
the material constants of the nanocomposites. Fisher et
al.(11) analyzed the effects of the nanotube waviness on
the modulus of the nanocomposites using a RVE with a
curved nanotube.

CNTs are different in size and form when they are
dispersed in a matrix to make a nanocomposites. They can
be single- or multi-walled with lengths varying from a few
nanometers to micrometers, and might be straight, twisted
and curled or in the form of ropes. Their distribution and
orientation in the matrix can be uniform, unidirectional or
random. All of these factors make the numerical simula-
tions of CNT-based composites extremely difficult.

The most critical part of any numerical analysis is the
discretization of domain of interest. If the domain contains
thin-walled structures of complex geometry (e.g. twisted,
curved, randomly distributed), the task of its proper/high
quality meshing is always challenging. An implementa-
tion of Finite Element Method (FEM) to the modeling of
such types of structures results in extremely large number
of elements, due to obvious restriction of element connec-
tivity and requirements of appropriate values of their as-
pect ratios. The Boundary Element Method (BEM) based
models partially alleviate the problem, as the discretiza-
tion of boundary surfaces (instead of volumes) is required,
only. However, still in many cases the high quality bound-
ary elements may be difficult and cumbersome to obtain.
To overcome meshing problems, we developed the Hybrid
Boundary Node Method (Hybrid BNM)(13) – (17). By com-
bining a modified functional with the moving least squares
(MLS) approximation, the Hybrid BNM is a truly mesh-
less, boundary-only method. The Hybrid BNM requires
only the discrete nodes located on the surface of the do-
main (for details, refer to Ref.(17)) and, hence, consider-
ably simplifies the discretization task. Moreover, it uses
the parametric representation of domain surfaces, only.
Such representation is used in any CAD software and can
be accessed in commercial packages via Open Architec-
ture features (usually the in-process COM servers/objects
can be exploited). This may considerably simplify the data
pre-processing and discretization tasks and lead to sub-
stantial resources savings.

In the next section, the Hybrid BNM is incorporated
into a multi-domain solver to compute the RVE with single
nanotube inserted. To our best knowledge, it is the first
attempt to evaluate thermal properties of nanocomposites
using the RVE approach.
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3. Hybrid BNM for Multi-Domain Models

For the sake of simplicity, only, two domains, i.e. the
nanotube and the polymer are considered here. It is as-
sumed that both the CNT and matrix in the RVE are con-
tinua of linear, isotropic and homogenous materials with
given heat conductivities. A steady state heat conduc-
tion problem governed by Laplace’s equation with proper
boundary conditions is considered for each domain.

The hybrid boundary node method is based on a mod-
ified variational principle, in which there are three inde-
pendent variables, namely:
— temperature within the domain, φ;
— boundary temperature, φ̃;
— boundary normal heat flux, q̃.

Suppose that N nodes are randomly distributed on the
bounding surface of a single domain. The domain tem-
perature is approximated using fundamental solutions as
follows:

φ=
N∑

I=1
φs

I xI , (1)

and hence at a boundary point, the normal heat flux is
given by:

q=−κ
N∑

I=1

∂φs
I

∂n
xI , (2)

where φs
I is the fundamental solution with the source at a

node sI , κ is the heat conductivity and xI are unknown pa-
rameters. For 3-D steady state heat conduction problems,
the fundamental solution can be written as

φs
I =

1
κ

1
4πr(Q, sI)

, (3)

where Q is a field point; r(Q, sI) is the distance between
the point Q and the node sI .

The boundary temperature and normal heat flux are
interpolated by moving least square (MLS) approxima-
tion:

φ̃(s)=
N∑

I=1
ΦI(s)φ̂I , (4)

and

q̃(s)=
N∑

I=1
ΦI(s)q̂I . (5)

In the foregoing equations, ΦI(s) is the shape function of
MLS approximation; φ̂I and q̂I are nodal values of tem-
perature and normal flux, respectively.

For the polymer domain, the following set of equa-
tions, expressed in matrix form, is given: U p

00 U p
01

U p
10 U p

11


{

xp
0

xp
1

}
=


Hp

0 φ̂
p
0

Hp
1 φ̂

p
1

 , (6)

 V p
00 V p

01

V p
10 V p

11




xp
0

xp
1

=


Hp
0 q̂p

0

Hp
1 q̂p

1

 , (7)

where superscripts/subscript p, 0 and 1 stand for polymer,
quantities exclusively associated with a domain, and quan-

tities associated with the interface, respectively. The sub-
matrices [U], [V] and [H] are defined as:

UIJ =

∫
ΓJ

s

φs
IvJ(Q)dΓ, (8)

VIJ =

∫
ΓJ

s

qs
IvJ(Q)dΓ, (9)

HIJ =

∫
ΓJ

s

ΦI(s)vJ(Q)dΓ, (10)

where ΓJ
s is a regularly shaped local region around a given

node sJ , vJ is a weight function and s is a boundary point.
Similarly, for the nanotube domain we have: Un

00 Un
01

Un
10 Un

11


{

xn
0

xn
1

}
=


Hn

0 φ̂
n
0

Hn
1 φ̂

n
1

 , (11)

and [
Vn

00 Vn
01

Vn
10 Vn

11

]{
xn

0
xn

1

}
=

{
Hn

0 q̂n
0

Hn
1 q̂n

1

}
, (12)

where the superscript n stands for the nanotube.
As the continuity and equilibrium conditions at the

interface between the nanotube and the polymer must be
satisfied, i.e.:

{φp
1 }= {φn

1} (13)

and

{qp
1 }=−{qn

1}, (14)

Eqs. (6), (7), (11) and (12) can be assembled into the fol-
lowing expression:

Ap
00 Ap

01 0 0

U p
10 U p

11 −Un
10 −Un

11

V p
10 V p

11 Vn
10 Vn

11

0 0 An
00 An

01
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1

xn
0
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1


=



Hp
0 dp

0

0

0

Hn
0dn

0


,(15)

where [A∗0i] and {d∗i } (∗ represents p or n; i indicates 0 or
1) are formed by merging [U∗0i] and [V∗0i], {φ̂∗0} and {q̂∗0} ac-
cording the known boundary conditions, respectively. For
degrees of freedom with prescribed temperature, the re-
lated elements in {φ̂∗0} are selected for {d∗i }, and the corre-
sponding rows of in [U∗0i] are selected for [A∗0i]; otherwise,
elements in {q̂∗0} are selected for {d∗i }, and the correspond-
ing rows in [V∗0i] are selected for [A∗0i].

The set of Eq. (15) is solved for unknown parameters
x, and then, by back-substitution into Eqs. (6), (7), (11)
and (12), the boundary unknowns are obtained either on
the interface or the external boundary.

As demonstrated, the Hybrid BNM is a boundary-
only meshless approach. No boundary elements are used
for neither interpolation nor integration purposes. There-
fore, it can circumvent the discretisation difficulty to a
large extent.
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4. Numerical Results

In this section we present two application examples
of the heat conduction analysis of CNT-based composites.
The first example deals with a unit model of RVE contain-
ing single CNT, while the second demonstrates simulation
involving curved CNT and study the effect of its waviness
on thermal properties of composites.

4. 1 Heat conduction in a square RVE containing
single straight CNT

A unit model of a representative volume element with
single nanotube is presented in Fig. 1 (a) with dimensions
given in Fig. 1 (b). Figure 1 (c) shows the computational
model discretised with boundary nodes. Homogeneous
boundary conditions are considered here, namely, uniform
temperatures of 300 K and of 200 K imposed at the two
end faces of the RVE, respectively, and heat flux free at
all other faces of the RVE and the inner face of the CNT
cavity. This boundary condition set allows us to esti-
mate equivalent heat conductivity of CNT-based compos-

(a)

(b)

(c)

(d)

Fig. 1 Nanoscale representative volume element containing a
straight nanotube. (a) The unit model and coordinates
system; (b) Dimensions of the unit model; (c) Discreti-
sation with boundary nodes; (d) Boundary conditions
and results output locations

ite in the axial direction. Assuming homogeneous material
properties and using Fourier’s law, the formula for equiv-
alent heat conductivity can be written as:

κ=−qL
∆φ
, (16)

where κ represents the heat conductivity; q is the heat flux
density, L the length of the RVE in the axial direction and
∆φ the temperature difference between the two end faces.

In the following section, several RVE models for
single-walled carbon nanotube of various lengths in a ma-
trix material are studied using the Hybrid BNM, in order
to evaluate the equivalent material constant of the CNT-
based nanocomposites. The temperature distribution and
heat fluxes are computed, and then the equivalent mate-
rial constants are calculated for the RVEs with CNTs of
different lengths.

4. 1. 1 Temperature distribution and fluxes in a
square RVE First, an RVE for a CNT of a specific
length is studied. The dimensions of the RVE are: for the
matrix, length L=100 nm, H=20 nm; for the CNT, length
Lc = 70 nm, outer radius R = 5 nm, thickness D = 0.4 nm
(which is close to the theoretical value of 0.34 nm for
Single-walled CNT (SWCNT) thickness). The heat con-
ductivities used for the CNT and matrix (polycarbonate)
are:

CNT: κt =6 000W/m ·K;

Matrix: κm =0.19W/m ·K;

These values are within the wide range of dimensions and
material constants for CNTs reported in literature(1) – (11).

It should be noted here that: (i) the thickness of the
CNT is very small; and (ii) the difference of heat conduc-
tivity between the CNT and the matrix is extremely large.
In this simulation, 2 208 nodes are used for the CNT and
2 192 nodes for the matrix as illustrated in Fig. 1 (c). All
calculation results were compared with that obtained using
the traditional BEM analysis, and found to be in a good
agreement.

The temperature distribution and heat flux in the axial
direction (along the dotted lines in Fig. 1 (d)) are presented
in Fig. 2 (a) and Fig. 2 (b), respectively. In Fig. 2 (a) it can
be seen that the temperature at the CNT cap (fullerence) is
uniform and equals to 250 K, from which the temperature
decreases to the prescribed value, 200 K, at the end square
face of the RVE. Around the CNT cap the heat flux con-
centration occurs (Fig. 2 (b)). It is noted that the direction
of the heat flux density qy shown in Fig. 2 (b) is in the y-
axis direction which is different from the outer normal of
the CNT cap. When z= 0, qy equals to the normal flux at
the tip point of the cap; while at the edge point of the cap
where z=−5, qy is nearly zero, although the normal flux
at this point is much higher due to the heat flux concentra-
tion.
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(a)

(b)

Fig. 2 Temperature and heat flux distribution near the tip cap
of the CNT

Figure 3 presents the temperature and heat flux dis-
tribution in the axial direction along the lines through the
matrix. An obvious feature of the temperature distribu-
tion is observed in Fig. 3 (a) that the temperature in the
matrix first decreases from prescribed temperature value
at the square end face, then remains almost constant at
the segments near the CNT, and finally continues to de-
crease to the lowest temperature at the other square end
face. This observation is consistent with the physical in-
terpretation. Due to that the heat conductivity of the CNT
is higher several orders of magnitude over that of the ma-
trix, almost entire flux flows through the CNT. Therefore,
nearly no flux flows in the matrix in the segments near the
CNT, and the temperature at these locations is almost uni-
form. The corresponding heat flux concentrations are also
observed near the tips of the CNT. The heat fluxes in the
matrix along the lines near the CNT are almost zero (see
Fig. 3 (b)). The volume fraction of the CNT for this model
is 15%, which is calculated using the following equation:

vn=
Vn+Vc

Vn+Vc+V p
, (17)

where vn is volume fraction of the nanotube; Vn, Vc and V p

are volumes of the nanotube, the cavity inside the nano-

(a)

(b)

Fig. 3 Temperature and heat flux distribution along the lines
through the matrix

tube and the polymer, respectively. The equivalent heat
conductivity of this RVE is 0.678 7 W/m ·K, which is 3.57
times that of the matrix.

4. 1. 2 Equivalent constants of composites with var-
ious CNT lengths To study the influence of CNT
length on the equivalent material constant, several models
with various CNT lengths have been considered. In the
computations, the dimensions and parameters are that of
section 4.1.1, except for the length Lc, which varies from
30 nm to 80 nm. The equivalent heat conductivity of the
RVE as a function of Lc is shown in Fig. 4. Results indicate
that equivalent heat conductivity is determined mainly by
the length of the CNT and the value of the matrix heat con-
ductivity, and relatively less affected by the value of the
heat conductivity of the CNT. This may be explained by
the fact that the heat conductivity of the CNT is so high,
that it can be considered as a super heat conducting ma-
terial (even if its value is reduced by factor of 10), and
the temperature within the CNT can be taken as uniform.
Based on this observation, we propose an approximate for-
mula for estimation of equivalent constant in the axial di-
rection as follows:

JSME International Journal Series A, Vol. 47, No. 2, 2004
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Fig. 4 Equivalent heat conductivity of the RVE for different
CNT length

κe= κm
L

L−Lc−0.4R
. (18)

In this formula, the CNT serves as a super heat con-
ductor which reduces the distance of the heat conduct-
ing path. The equivalent heat conductivities estimated by
means of Eq. (18) for various lengths of the CNT are also
presented in Fig. 4. It can be seen that the equivalent heat
conductivities for CNTs calculated by using Eq. (18) are
in a very good agreement with that of numerical simula-
tions. For the cases Lc=30 nm and Lc=80 nm, the volume
fractions of the CNTs are 7.2% and 17%, and the equiva-
lent heat conductivities are 1.49 and 4.34 times that of the
matrix, respectively.

4. 2 Heat conduction in RVE containing curved
CNT

In order to study the effect of CNT waviness and
its influence on thermal properties of nano-composites,
the unit RVE model with the curved CNT embedded is
used. The geometry and boundary conditions are pre-
sented in Fig. 5 (a) – (c) while Fig. 5 (d) shows the com-
putational model discretised with boundary nodes.

Nanotube waviness is considered by prescribing a si-
nusoidal NT shape as:

z=Asin

(
2πy
Lc

)
, (19)

where Lc stands for the wave length of the sinusoid func-
tion, and y is the fiber axial direction.

Again, homogeneous boundary conditions are ap-
plied, namely uniform temperatures of 300 K and of 200 K
imposed at the two end faces of the RVE, respectively, and
heat flux free at all other faces of the RVE and the inner
face of the CNT cavity.

4. 2. 1 Temperature and fluxes distributions in an
RVE with a curved CNT An RVE for a curved CNT
of a specific length and waviness is first studied. The
dimensions of the RVE are: for the matrix, length L =
100 nm, B = 20 nm and H = 60 nm; for the CNT, length
Lc = 70 nm, A = 20 nm outer radius R = 5 nm, thickness

(a)

(b)

(c)

(d)

Fig. 5 Nanoscale representative volume element with a curved
nanotube embedded. (a) The unit model and coordinates
system; (b) Top view: dimensions; (c) Side view: di-
mensions, boundary conditions and results output loca-
tions; (d) Discretisation with boundary nodes

D=0.4 nm. The heat conductivities used for the CNT and
matrix are those of previous section.

Temperature distribution and heat flux in the axial di-
rection are presented in Fig. 6. Again, it is seen (Fig. 6 (a))
that temperatures at the locations close to CNT (the start
points for each dotted line except the one that passes all
through the matrix) are almost uniform. The correspond-
ing heat flux concentrations are also observed near the tip
of the CNT (z = 20) in Fig. 6 (b). The heat fluxes in the
matrix at the locations near the middle part of the CNT

Series A, Vol. 47, No. 2, 2004 JSME International Journal



187

(a)

(b)

Fig. 6 Temperature and heat flux distribution in the matrix

are very small and approaching zero.
4. 2. 2 Equivalent constants of composites with var-

ious CNT waviness The influence of CNT waviness
on the equivalent material constant, employing several
models with various CNT waviness ratios, is also inves-
tigated. Dimensions and parameters of section 4.2.1 are
kept, except for the waviness ratio (w= A/Lc) and the ra-
tio of the phase constant (Cr = κ

CNT/κmatrix). The waviness
ratio is changed by varying the amplitude A of the sinusoid
curve while keeping the half waviness Lc constant. Com-
putations were performed for the following phase constant
ratios: Cr = 30 000, Cr = 300 and Cr = 30. For each value
of Cr the conductivity of the matrix is held constant at
0.19 W/m·K. The equivalent heat conductivity of the RVE
as a function of w is presented in Fig. 7. Results demon-
strate that equivalent heat conductivity is only slightly de-
pendent on the CNT waviness for both high and low ratios
of the phase conductivity. These results are in a sharp con-
trast to that of the elasticity problem(11), where the equiv-
alent Young’s modulus quickly decreases with increasing
nanotube curvature.

Fig. 7 Equivalent heat conductivity for various waviness

5. Conclusions and Discussion

The paper presents an implementation of Hybrid
BNM to the heat conduction analysis in bodies contain-
ing thin-walled structures. The Hybrid BNM is a mesh-
less, boundary-only method requiring discrete nodes lo-
cated on bounding surfaces of the domain of interest, only.
Moreover, it uses the parametric representation of those
surfaces, and as such representation is employed in any
CAD software, commercial packages may be exploited.
That greatly simplifies the pre-processing and discretiza-
tion tasks and makes approach extremely useful, and more
cost- and resources-effective than based on conventional
FEM/BEM models.

Mathematical models presented in the paper rely on
continuum mechanic principles and do not account for
quantum effects. However, the continuum-based models
seem to be so far the only feasible one for performing
preliminary simulations of nano-composites behavior and
properties at practical/engineering level. Hence, models
and solution procedures outlined in this study may be used
for any inclusion problem.

The multi-domain Hybrid BNM formulation pre-
sented here may be easily extended and enhanced for
problems involving randomly distributed CNTs of vari-
ous lengths, shapes and orientations, employing the Fast
Multipole expansion approach(18), (19). This is a subject of
ongoing research and will be reported shortly.

At current stage, numerical results demonstrate that
temperatures within the CNT and at the interface are al-
most uniform, and heat flux concentration occurs at the
two tips of the CNT. With the addition of CNTs of about
7.2% and 17% (by volume fraction) to the composite, the
heat conductivity in the CNT axial direction can increase
as many as 49% and 334%. The presented results show
that the equivalent heat conductivity is determined mainly
by the length of the CNT, and less affected by the value
of the CNT heat conductivity. An approximate formula
for estimating the equivalent material constant has been
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given, which is found to be of reasonable accuracy in es-
timating the equivalent heat conductivity in the CNT axial
direction. The effects of the CNT waviness on the equiv-
alent conductivity were also investigated. In contrast to
the elastostatic case(11), the presented results show that the
equivalent heat conductivity is less affected by the wavi-
ness of the CNT.

Acknowledgements

This work was supported by the CLUSTER of Min-
istry of Education, Culture, Sports, Science and Technol-
ogy (Japan). The first author would like to thank Mr. K.
Tomokiyo for his help during the course of this research.

References

( 1 ) Endo, M., Kim, Y.A., Nishimura, K., Matushita, T.
and Hayashi, T., From Vapor-Grown Carbon Fibers
(VGCFs) to Carbon Nanotubes, Carbon Filaments and
Nanotubes: Common Origins, Differing Applications,
edited by Biro, L.P., Bernardo, C.A., Tibbetts, G.G.
and Lambin, P.h., Kluwer Academic Publishers, NATO
Science Series E: Applied Sciences, Vol.372 (2001),
pp.51–61.

( 2 ) Endo, M., Kim, Y.A., Hayashi, T., Nishimura, K.,
Matushita, T., Miyashita, K. and Dresselhaus, M.S.,
Vapor-Grown Carbon Fibers (VGCFs): Basic Proper-
ties and Their Battery Applications, Carbon, Vol.39
(2001), pp.1287–1297.

( 3 ) Hone, J., Whitney, M., Piskoti, C. and Zettl, A., Ther-
mal Conductivity of Single-Walled Nanotubes, Phys.
Rev. B, Vol.59, No.4 (1999), pp.2514–2516.

( 4 ) Yi, W., Lu, L., Zhang, D.L., Pan, Z.W. and Xie, S.S.,
Linear Specific Heat of Carbon Nanotubes, Phys. Rev.
B, Vol.59 (1999), pp.9015–9018.

( 5 ) Kim, P., Shi, L., Majumdar, A. and McEuen, Pl.,
Thermal Transport Measurements of Individual Mul-
tiwalled Nanotubes, Phys. Rev. Lett., Vol.87, No.21
(2001), pp.215502-1–4.

( 6 ) Berber, S., Kown, Y.-K. and Tomanek, D., Unusu-
ally High Thermal Conductivity of Carbon Nanotubes,
Phys. Rev. Let., Vol.84, No.20 (2000), pp.4613–4617.

( 7 ) Osman, M.A. and Srivastava, D., Temperature Depen-
dence of the Thermal Conductivity of Single-Wall Car-
bon Nanotubes, Nanotechnology, Vol.12, No.1 (2001),
p.24.

( 8 ) Che, J., Cagin, T. and Goddard, III, W.A., Thermal
Conductivity of Carbon Nanotubes, Nanotechnology,
Vol.11 (2000), pp.65–69.

( 9 ) Qian, D., Dickey, E.C., Andrews, R. and Rantell, T.,
Load Transfer and Deformation Mechanisms in Carbon
Nanotube Polystyrene Composites, Applied Physics
Letters, Vol.76, No.20 (2000), pp.2868–2870.

(10) Liu, Y.J. and Chen, X.L., Evaluations of the Effective
Material Properties of Carbon Nanotube-Based Com-
posites Using a Nanoscale Representative Volume El-
ement, Mechanics of Materials, Vol.35 (2003), pp.69–
81.

(11) Fisher, F.T., Bradshaw, R.D. and Brinson, L.C., Effects
of Nanotube Waviness on the Modulus of Nanotube-
Reinforced Polymers, Applied Physics Letters, Vol.80,
No.24 (2000), pp.4647–4649.

(12) Hyer, M.W., Stress Analysis of Fiber-Reinforced Com-
posite Materials, (1998), McGraw-Hill, Boston.

(13) Zhang, J.M., Yao, Z.H. and Li, H., A Hybrid Bound-
ary Node Method, International Journal for Numerical
Methods in Engineering, Vol.53 (2002), pp.751–763.

(14) Zhang, J.M. and Yao, Z.H., Meshless Regular Hybrid
Boundary Node Method, Computer Modeling in Engi-
neering & Sciences, Vol.2 (2001), pp.307–318.

(15) Zhang, J.M., Yao, Z.H. and Tanaka, M., The Mesh-
less Regular Hybrid Boundary Node Method for 2-D
Linear Elasticity, Engineering Analysis with Boundary
Elements, Vol.27 (2003), pp.259–268.

(16) Zhang, J.M. and Yao, Z.H., Analysis of 2-D Thin
Structures by the Meshless Regular Hybrid Boundary
Node Method, Acta Mechanica Sinica, Vol.15 (2002),
pp.36–44.

(17) Zhang, J.M., Tanaka, M. and Matsumoto, T., Meshless
Analysis of Potential Problems in Three Dimensions
with the Hybrid Boundary Node Method, International
Journal for Numerical Methods in Engineering, Vol.59
(2004), pp.1147–1160.

(18) Greengard, L. and Rokhlin, V., A New Version of
the Fast Multipole Method for the Laplace Equation
in Three Dimensions, Acta Numerica, Vol.6 (1997),
pp.229–269.

(19) Nishida, T. and Hayami, K., Application of the Fast
Multipole Method to the 3D BEM Analysis of Electron
Guns, edited by Marchettia, M., Brebbia, C.A. and Ali-
abadi, M.H., Boundary Elements XIX, (1997), pp.613–
622, Computational Mechanics Publications.

Series A, Vol. 47, No. 2, 2004 JSME International Journal


